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INJECTIVE HULL OF AN ORE EXTENSION OVER A

DIVISION RING

Eun-Hee Cho and Sei-Qwon Oh

Abstract. It is shown that a left Ore extension D[x;σ] over a
division ring D is a left Goldie ring with no zero-divisor and that
its left Goldie quotient is an injective hull of D[x;σ].

Let D be a division ring and let σ be a nonzero homomorphism from
D into itself. Note that σ is a monomorphism since D is a division ring.
Denote by R = D[x;σ] the left Ore extension over D determined by
σ. Refer to [1, Chapter 2] for the left Ore extension. Then R is a free
left D-module with basis {xi|i = 0, 1, 2, . . .} and the multiplication of R
satisfies the condition

(1) xa = σ(a)x

for all a ∈ D. Hence every nonzero element f ∈ R is expressed uniquely
by f = anx

n + . . .+ a0 for some ai ∈ D and an 6= 0. For such f , we say
that f has degree n and denoted by deg(f) = n.

Lemma 1. For any nonzero elements f, g ∈ R, fg 6= 0 and deg(fg) =
deg(f) + deg(g). In particular, R has no zero-divisor.

Proof. Let f = anx
n+ . . .+a0 and g = bmx

m+ . . .+b0, where ai, bj ∈
D and an 6= 0, bm 6= 0. Then fg = anσ

n(bm)xn+m + (lower terms) by
(1). Since σ is a monomorphism and D is a division ring, the leading
coefficient anσ

n(bm) of fg is nonzero. Hence fg 6= 0 and

deg(fg) = n+m = deg(f) + deg(g).

In particular, R has no zero-divisor.

Proposition 2. For any f, g ∈ R with f 6= 0, there exist q, r ∈ R
uniquely such that

g = qf + r,

where either r = 0 or deg(r) < deg(f).
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Proof. Repeat the proof of the division algorithm in a polynomial
ring over a field.

Corollary 3. Every left ideal of R is principal.

Proof. Let N be a left ideal of R. If N = {0}, then N = R0. Suppose
thatN 6= {0} and let f be a nonzero element ofN which is of the minimal
degree among such elements. For any g ∈ N , there exist q, r ∈ R such
that g = qf+r, where either r = 0 or deg(r) < deg(f) by Proposition 2.
If r 6= 0 then r = g−qf ∈ N and deg(r) < deg(f), which is a contraction
to the minimality of deg(f). Hence r = 0 and g = qf . It follows that
N = Rf , which is principal.

Corollary 4. The ring R is left noetherian.

Proof. Every left ideal of R is finitely generated by Corollary 3. Thus
R is a left noetherian ring.

Refer to [1, Chapter 6] for a left Goldie ring and a left Goldie quotient.

Corollary 5. The ring R is a left Goldie ring and thus there exists
the left Goldie quotient

Q = {f−1g|f, g ∈ R, f 6= 0}.

Proof. It follows by Lemma 1, Corollary 4 and Goldie’s theorem [1,
Theorem 6.15].

Refer to [1, Chapter 5] for the concept of injective hull.

Theorem 6. The left Goldie quotient Q is an injective hull of R.

Proof. Let N be a left ideal of R and let ϕ be a homomorphism of left
R-modules from N into Q. Then N = Rf for some f ∈ R by Corollary 3.
If ϕ(f) = 0 then ϕ = 0 and thus there exists a homomorphism ψ from R
into Q, say ψ = 0, such that ψ|N = ϕ. Suppose that ϕ(f) 6= 0. Define
a map ψ from R into Q by

ψ : R→ Q, g 7→ gf−1ϕ(f)

for all g ∈ R. Then ψ is a homomorphism of left R-modules and ψ(f) =
ff−1ϕ(f) = ϕ(f) and thus ψ|N = ϕ. Hence Q is an injective left R-
module by Baer’s Criterion [1, Proposition 5.1].

Every nonzero element y ∈ Q is of the form y = f−1g for some
nonzero elements f, g ∈ R. Hence 0 6= fy = g ∈ R and thus Q is an
essential extension of R. It follows that Q is an injective hull of R.
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